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We consider the weighted density approximation of the density functional 
description of systems in thermal equilibrium. We show that knowledge of the 
intermolecular potential puts constraints on the theory which take the form of 
a small number of nonlinear integral equations of unusual type. We show that 
for homogeneous states of systems with purely repulsive potentials these equa- 
tions are sufficient to determine the free energy functional completely, at least at 
densities where the virial expansion of the theory converges. We have not been 
able to find either analytic or numerical solutions of these equations at arbitrary 
densities. We have solved the equations in the density expansion to the lowest 
order in which it disagrees with the exact virial expansion of the system. This 
extended weighted density approximation (EWDA) gives the exact virial expan- 
sion of the pressure to third order and the pair distribution function to first 
order in the density, as do the other standard integral equation theories. In the 
next order the EWDA is not exact, but it gives very good numerical results for 
the pressure and pair distribution and for both hard and soft repulsive poten- 
tials. In addition, the difference between the pressure and the compressibility 
equations of state is numerically very small, indicating a high degree of ther- 
modynamic consistency. Were these properties to persist at higher densities, the 
EWDA would be clearly preferred to the usual integral approach, at least for 
repulsive potentials. For potentials with an attractive part the EWDA becomes 
singular at low temperatures in a way that suggests there is a structural flaw in 
the assumed form of the free energy functional. 

KEY WORDS: Density functional; weighted density approximations; fluids. 

1. I N T R O D U C T I O N  

T h e r e  has  been  a r a t h e r  large  n u m b e r  of  ar t ic les  (e.g., refs. 1 -3)  in wh ich  

the  dens i ty  func t iona l  ~4) f o r m a l i s m  of  the  s ta t i s t ica l  m e c h a n i c s  of  t h e r m a l  

equ i l i b r iu ,n  has  been  app l i ed  to  the  p r o b l e m s  of  i n h o m o g e n e o u s  dense  

fluids of  va.-ious sorts.  These  app l i c a t i ons  h a v e  been  b o t h  qua l i t a t i ve ly  and,  
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to varying degrees, quantitatively successful. It is characteristic of these 
methods that they predict the properties of an inhomogeneous state (i.e., a 
solid, an interracial region, a boundary region) given enough properties 
of a "reference" homogeneous state. Typically one requires at least an 
equation of state and the direct correlation function of the reference 
homogeneous state as input, and these come from "other" theories of the 
dense liquid, but not from the density functional theory itself. Thus, the 
intermolecular potential does not directly appear in these calculations and 
one avoids a fundamental question of how the free energy functional is 
related to the intermolecular potential. It is that question we address here. 

In this paper we consider one of the most quantitatively successful of 
these theories, the weighted density approximation (WDA), proposed by 
Tarazona, ~2) and also extensively investigated by Curtin and Ashcroft3 3~ 
We give in Section 2 an extension of this theory where the density func- 
tional is related to the intermolecular potential, in a natural way, by a 
small set of nonlinear equations. In Section 3 we argue that, to all orders 
in a density expansion, these equations determine the free energy functional 
and thus completely specify the theory, at least where the density expansion 
converges. This result holds for all purely repulsive potentials, but fails at 
low temperatures for potentials with an attractive part. With this result the 
WDA theory provides a method for computing the equilibrium properties 
of most states, both homogeneous and inhomogeneous, for systems with 
arbitrary intermolecular and external potentials without any reference to 
other theories of dense fluids. We show that this theory gives the first two 
terms of the density expansion of the pair distribution function correctly for 
all repulsive intermolecular potentials. The third term in the expansion is 
not exact and can only be computed numerically once the intermolecular 
potential is chosen. In Section 4 we give our results for this term for two 
cases, the strongly repulsive hard-sphere system and the weakly repulsive 
Gaussian model, and show that it reproduces the exact virial expansion 
result with remarkable accuracy. A comparison of these results to both the 
exact results and the results of other standard integral equation theories of 
fluids is given. The thermodynamic consistency of the theory is examined. 
We conclude with a brief discussion of the strengths and weaknesses of this 
theory. 

2. EXTENSION OF THE W D A  THEORY 

The basic assumption of the WDA theory is that the free energy, as a 
functional of the local density p(r), can be written as 

flF[p]=fp(r)[lnp(r)-l] dr+fp(r) gt(cS(r)) dr (2.1) 
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where ~ is a local functional of the local density implicitly defined by the 
form 

~(s) = f w(s - u, fi(s)) p(u) du (2.2) 

It is assumed that for constant p, w satisfies the normalization condition 

f w(r, dr = 1 (2.3) P) 

so that for homogeneous states, p(r), p, and ~(r) are identical and 5u/fl has 
the interpretation of the equilibrium value of the excess free energy per 
particle. Reasons for choosing these particular forms are given in refs. 2 
and 3 (our 5u/fl is their 5u). 

Now, to complete the theory one must specify the two functions ~u 
and w and our purpose is to show how to do this in terms of the inter- 
molecular potential ~b(r). In the presence of a external single-particle 
potential u(r) the equilibrium state of the system is given by the extremal 
condition 

/3# - flu(r) - 3fl in 2 = fl 6F[p] = In p(r) 
6p(r) 

6~(s) ( 
+ J p(s) ~u'(~(s)) ~ ds + ~(t~(r)) (2.4) 

where fl is the inverse temperature, # is the chemical potential, 
2 =  (2~m/flh2) 1/2, and the form (2.1) has been used for F. From (2.2) we 
have 

6~(s) w(s-  r, ~(s)) 
(2.5) 

6p(r) 1 - ~ ~ ' ( s -  u, ~(s)) p(u) du 

where w' is the derivative of w with respect to the second (p) argument. If 
(2.5) is evaluated for a uniform state p ( r ) =  p = fi(r), then the normaliza- 
tion Condition (2.3) requires the integral in the denominator of (2.5) to 
vanish and we have 

6~(s) 
= w(s - r, p) (2.5h) 

6p(r) 

where the h after the equation number indicates a functional which has 
been evaluated in a homogeneous state. If u ( r ) = 0  and the equilibrium 
state is homogeneous, then (2.4) becomes 

fl# - 3fl In 2 = In p + p~'(p) + ~(p) (2.4h) 
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The direct correlation functional is the second functional derivative of F 
and, for homogeneous states, takes the form (3) 

C ( r - s ,  p) = -2~U'(p) w(r - s, p) - p ~ " ( p )  f w(t - r, p) w(t - s, p) dt 

/ .  

- p ~ ' ( p )  J [ w ( s  - t, p)  w ' ( r -  t, p)  + w(r - t, p)  w'(s  - t, p)  ] dt 

(2.6h) 

If we integrate (2.6h) over r and use the normalization condition (2.2), we 
obtain the usual compressibility sum rule 

f C(r, p ) d r  = - 2 ~ ' ( p ) -  ptP"(p) (2.7h) 

These equations are the usual (2'3) results of density functional theory 
with the WDA assumption. The theory is completed by specifying the two 
functions w and gt. To do this, we follow an idea used by Percus (4) in 
deriving the Percus-Yevick and the hypernetted chain equations. The idea 
is that the pair distribution function g(r, t, #) of a system at chemical 
potential # and zero external potential is simply related to the local density 
p(r, #) of the same system with an external potential u(r) provided by a 
fixed particle at t interacting with the system particles by the intermolecular 
potential r t). Specifically, 

p(r,/Z)o g(r, t,/~)o = p(r, #)*(,,o (2.8) 

where the subscripts are meant to indicate that quantities on the left are 
evaluated in zero external field while the local density on the right is 
evaluated in the external field u(r)=~b(r, t). It would seem, in general 
terms, that (2.8) puts some condition on the choice of w and gt, since given 
them, both sides of (2.8) can, in principle, be computed. It is perhaps 
surprising that (2.8) appears to completely determine w and gt, at least for 
a fairly large class of intermolecular potentials and states. 

To see this, we assume that the state (#, 0) is homogeneous, so that 
p(r,/~)o = P, and that (2.4h) applies and determines #. We then use (2.8) in 
(2.4) for the state (/~, ~b) and eliminate # between this equation and the 
previous one to obtain 

In g(r, t ) =  gt(p)_ gt(t~(r, t ) ) +  p ~ ' ( p )  

- p f g ( s , t )  ~'(/5(s, t)) ~ d s -  fl~b(r, t) (2.9) p( ) 
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where from (2.2) and (2.5) we have 

/~(r, t ) = p  f w ( r - s ,  p(r, t)) g(s, t) ds (2.10) 

and 

6/~(s, t) w ( s -  r, ~(s, t)) 
(2.11) 

3p(r) 1 - p S w'(s - u,/~(s, t)) g(u, t) du 

In addition we have the usual Ornstein-Zernike relation between the direct 
correIation and the pair distribution functions, 

C(r,s)-[g(r,s)-l]+p f C(r,t)[g(t,s)-l]dt=O (2.12) 

Now one can see that the six equations (2.6h), (2.7h), and (2.9)-(2.12) 
produce some kind of consistency constraints on the functions w and ~. 
For, suppose we knew w and ~; then (2.9)-(2.11) would result in an equa- 
tion involving only the unknown g and the intermolecular potential ~b. If 
it could be solved for g, then C would follow from (2.12). But then C 
would have to satisfy (2.6h) and (2.7h) with the given w and ~ and that 
seems unlikely for arbitrary w and ~. It is nevertheless surprising that the 
consistency of these six equations is apparently a strong enough require- 
ment to completely determine w and ~u for a large class of intermolecular 
potentials, at least at those densities for which the virial expansion con- 
verges. We show in Section 3 that these six equations determine the formal 
density expansion of w, 7 t, C, and g to all orders and we explicitly give the 
equations determining the first three terms in the expansion of g. 

3. THE DENSITY EXPANSION 

We assume (2) the function w(r, p) is analytic in the second variable 
and has the expansion 

w(r, p) = wo(r) + pwl(r) + p2w2(r) + .. .  (3.1) 

The normalization condition (2.3) requires that S wi(r)dr=6; .o .  If this 
expansion is substituted into (2.2) and solved iteratively for p(r), we find 
the density expansion 

~(s) = f Wo(S - u) p(u) du 

r Wo(S - u) p(u) du ( w,(s - v) p(v) d ,  + o-- (3.2) + 
d J 
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An examination of the form of the general term in this expansion shows 
that wp occurs first in the p + 1 term and always linearly in the form 

From (3.2) it follows that 

6p(s)_fp(r) Wo(S- r )+  [Wo(S-r)  f w , ( s -  v) p(v)dv 

wl(s-r) f wo(S-u)p(u)dul+ ... (3.3) + 

and in this expansion w, will occur first in the pth order term. When (3.2) 
and (3.3) are evaluated using the density function of (2.8), we obtain the 
density expansions of (2.10) and (2.11 ), 

/~(s, t) = p f Wo(S - u) g(u - t) du 

+ p2 ~ Wo(S - u) g(u - t) du ~ Wl(S- v) g(v - t) dv + ... (3.4) 
d J 

6p(r) 
6~3(s, t______~) = Wo(S _ r) + p [Wo(S - r) I w l ( s -  v) g(v - t) dv 

+ Wl(S-r) I wo(S-u) g(u-t)dul+ ... (3.5) 

In these equations we have assumed that the intermolecular potential is 
translationally invariant, so that g(s, r ) =  g ( s -  r). 

Now we assume that g, C, and ~u have density expansions like (3.1) 
and we require (2.9) to be satisfied at each order in the density. Using (3.4) 
and (3.5) in (2.9), we obtain 

In go(r - t) = -//ff(r - t) (3.6a) 

g~(r-  t) [ 1 g o ( r -  t) 2~ul 1 -- f wo( r -  u) g o ( u -  t) du (3.6b) 
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g2 ( r - t )  

go(r - t) 
l~gl(r:t}q2 {3 [fwo(r_u) go( u 2 
2 [_go(r - t)]  + ~/2 - -  - -  t) du]  

- - 2 f  go(S-U) f Wo(S-U) go(u-t)duwo(s-r)ds } 

- T~ I f  w o ( r - u ) g o ( U - t ) d u f w l ( r - v ) g o ( V - t )  dv 

+ fgo(S-t) Wo(s-r)f Wx(S-V ) go(V- t )dv  ds]  

- ~xlfgo(S-t) wt(s-r)fwo(S-U)go(u-t)duds 

+ 2f gl(s-t) wo(s-r)ds] (3.6c) 

The pth order term in this expansion will have gp on the left, ~p and lower 
order terms on the right, and, most importantly, only gp_l, Wp 1, and 
lower orders on the right. 

The density expansion of (2.7h) yields 

f Co(r) dr = -2~1 ,  f Cl(r) dr = -6T2 ,  f C2(r) = -12~3  dr 

(3.7) 

which show that Cp ~ determines Up. 
We also need the density expansion of (2.6h), which is better expressed 

in terms of the Fourier transforms of C and w, since the equation involves 
convolution-type integrals. If C(k, p) and w(k, p) are the transforms, the 
density expansion gives 

Co(k) = -2T~ wo(k) (3.8a) 

C~(k) = ,4T2wo(k)-2~2w~(k)-2~[l+wo(k)] wl(k) (3.8b) 

where we do not indicate the explicit form of the higher order terms. The 
general pth order term will involve Cp, gtp+ 1, and lower orders, and Wp 
and lower orders. A generic property of these terms is that, as in (3.8b), Wp 
always occurs only linearly and always multiplied by 1 + Wo. The impor- 
tant point is that these equations can be solved for Wp(r) provided that 
1 + wo(k) has no zeros for real k. 
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Finally, we need the density expansion of the Ornstein-Zernike 
relation (2.12), 

Co(r - s) = go(r - s) - 1 (3.9a) 

C l ( r - s )  = g l ( r - s ) -  ~ C o ( r - t ) [ g o ( t - s ) -  1] dt (3.9b) 
J 

In the general term, Cp and gp will appear to the same order. 
We can now show that Eqs. (3.6)-(3.9) (and their higher order coun- 

terparts) can be solved iteratively for all of the unknowns to every order 
provided that 1 + w0(k) has no zeros for real k. We exhibit the first few 
terms and argue that the process continues indefinitely. From (3.6a) we 
have 

go(r) = exp[ - /?4(r) ]  (3.10) 

which agrees with the lowest order virial result. With (3.10) and (3.9a) we 
find Co = g o -  1 and then from (3.7) we have for g t  

1; 
~Vx= - ~  [ g o ( r ) -  13 dr (3.11) 

which can be shown to agree with the virial expansion of the pressure. 
Now, (3.8a) determines Wo and with these results we can use (3.6b) to find 
gl as 

g~(r-t)=go(r-t){-;[go(r)-l]dr+f[,go(r-u)-l]go(u-t)du} 

= g~ f [ ' g ~  1 ] [ - g ~  1] du (3.12) 

which again agrees with the virial result. Now the same sequence of steps 
can be repeated. From (3.9b) we determine C~, and (3.7) gives gt 2 (which 
agrees with the virial result). Then Wl can be found from (3.8b) and g2 
from (3.6c). We do not give the explicit formula for g2, as it is messy, but 
one can show that it is not identical to the virial result. Some thought will 
show that the structure of the higher order terms in Eqs. (3.6)-(3.9) is such 
that this solution procedure can be carried out to arbitrary order. Hence, 
this theory has a unique solution within the region of convergence of the 
density expansion. 

The above solution to the theory is predicated on the assumption that 
wo(k)~ 1 for real k, so that (3.8) and its higher order versions can be 
solved for a nonsingular wp(k) to all orders. In terms of the Mayer function 
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f ( r ) = e x p [ - f l f ( r ) ] -  1, we find wo(r)=f(r)/~f(r)dr and for the trans- 
form w o ( k ) = f ( k ) / f ( k  =0) .  Now it's easy to see that for purely repulsive 
forces (r > 0 everywhere) we have Iwo(k)l < 1 for all real k-r 0, so that the 
above assumption is satisfied. One can also see that the assumption is 
satisfied for small enough/~ for any realistic intermolecular potential. On 
the other hand, it is not hard to show that if r is attractive at intermediate 
ranges, then the assumption must fail at large ft. If w0(k) = t for some real 
k, then the solutions for wp(k) are singular for that k and it is apparently 
impossible to invert the transform to obtain a physically reasonable 
short-ranged wp(r). Thus, this theory seems well defined for purely 
repulsive potentials, but must be restricted to higher temperatures for more 
realistic potentials. 

4. RESULTS AND CONCLUSIONS 

As a first test of the accuracy of the above theory we have computed 
gJgo and the fourth pressure virial B4 for both the hard-sphere fluid and 
the Gaussian model. These are the lowest order terms for which the theory 
does not give exact values. The expressions for g2 have been evaluated 
numerically to a relative accuracy, we estimate, of 0.5 %. 

In Table I we give some comparisons for hard spheres of unit 
diameter. We list values for the ratio g2(r)/go(r) since this is finite in the 
hard-sphere limit even for r < 1 and this is typically where approximate 
integral equation theories are least exact, as is also the case with this 
theory. We give values at r = 0, r = 1, and r = 2 rather than a graph because 

Table I. Results for Unit-Diameter Hard Spheres a 

B4/B 3 g2(O)/go(O) g2(1)/go(1) g2(2)/go(2) 

Exact 0.2869 12,885 1.259 -0 .407  

EWDA 0.2935 (C) 13,269 1,266 - 0 , 4 0 2  
0.2887 (P) 

PY 0.2969 (C) 8.225 1,097 -0 .407  
0.2500 (e) 

HNC 0.2092 (C) 16.998 1.953 - 0.407 
0.4453 (P) 

YBG 0.3424 (C) 14.256 0.988 -0 .407  
0.2252 (e) 

Integral equation values are taken from refs. 5 and 8. Here B 2 = 2n/3. Values of B 4 are from 
either the compressibility (C) or the pressure (P) equation of state. 

822/56/5-6-11 
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the difference between our values and the exact virial values could not be 
seen on a graph to normal scale. We give the exact virial result, the result 
of this extended weighted density approximation (EWDA), and the results 
of three standard integral equation theories, Percus-Yevick (PY), hyper- 
netted chain (HNC), and the Yvon-Born-Green (YBG). One sees that the 
EWDA results for the distribution function are substantially better than 
the other integral equation results, particularly at small r. We show also 
the values for the fourth virial coefficient B 4 in Table I. B 4 c a n  be found 
from g2(r) using either the compressibility (C) or the pressure (P) equation 
of state. (5) The well-known thermodynamic inconsistency of the usual 
integral equations produces different values for B4,  both of which are listed. 
We have not been able to show that the EWDA is, or is not, ther- 
modynamically consistent in this sense, but we see no formal reason that 
it should be. Thus, the 1.6 % difference between the EWDA values for 
B 4 ( C  ) and B 4 ( P  ) is taken to be a real measure of the thermodynamic con- 
sistency of the theory and not due primarily to numerical error. Here again 
the EWDA does much better than the other integral equation approaches. 

At the other extreme of a soft repulsive potential, consider the (physi- 
cally unrealistic) Gaussian model defined by assuming the Mayer function 
takes the form f(r)= exp(-~r  2) and for which analytic expressions for the 
exact B4 and g2(r) can be found. C6) Table II shows the results with c~ chosen 
so that the second virial coefficient is the same as for the unit-diameter 
hard-sphere case, e=(97t/16) 1/3. Again we see very good agreement 
between the EWDA and the exact values and poor results for the other 
integral equations. In this case the two EWDA values for B4 do agree to 
0.5% and agree with the exact value to that accuracy also, so these 
differences could be primarily due to numerical errors. 

Table II. Results for  the Gaussian Mode l  w i th  a =  (9rr /16)  1/za 

84/83 g2(O) g2(1) gz(2) 

Exact - 0.1255 0.471 - 0.526 -0 .496  

EWDA - 0.1247 (C) 0.506 - 0.522 - 0.496 
-o.1251 (P) 

PY -0 .0732 (C) -0 .238  - 1,064 -0.501 
-0 .1540 (P) 

HNC -0 .1540  (C) 0.859 -0 .736  -0 .492  
-0 .1098 (P) 

a Values are from ref. 6 and from our own calculations. Values of B 4 are from either the 
compressibility (C) or pressure (P) equation of state. 
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The remarkably  good  agreement  of  the E W D A  with the virial expan- 
sion for two very different cases is encouraging;  however,  the real interest 
in equat ions of this type is, of course, at higher densities, where the density 
expansion is not  useful. For  this we need either analytic or  accurate 
numerical  solutions of  the unexpanded equat ions (2.6h)-(2.12). We have 
not  yet been able to accomplish this, but  the accuracy of  these low-density 
results, a long with the success of  the W D A  theory in treating the 
hard-sphere freezing transition, seems to justify more  effort in this 
direction. 

The theory can, in principle, be extended to inhomogeneous  states and 
the problems of  phase coexistence; however, some of the equat ions take a 
substantially more  complicated form and there may  be conceptual  dif- 
ficulties as well. Whether  the theory will be an accurate one for a wide 
range of interactions and states we cannot  yet say. The major  formal dif- 
ficulty we see with this theory is its failure at low temperatures for systems 
whose intermolecular  potentials are not  purely repulsive. This suggests that  
there ~s some structural  flaw, perhaps in the assumed W D A  form of the free 
energy. We have tried a number  of  variations on the W D A  assumption,  but  
have not  found a version free of  all structural difficulties. 
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